COMPARISON OF LASER SCANNING, PHOTOGRAMMETRY AND SFM-MVS PIPELINE APPLIED IN STRUCTURES AND ARTIFICIAL SURFACES

2012 ISPRS Melbourne, Com III/4

D. Skarlatos, S.Kiparissi Cyprus University of Technology

2012 ISPRS Melbourne – WGIII/4

Structure of presentation

- Reason why should we compare
- Methods that we are going to compare
- Test cases scenarios
- Analysis of the tests
- Conclusions

Rationale Emerging technologies

Do you remember...

- when land measurements were tedious and photogrammetry was fast ?
- when laser scanning made photogrammetry obsolete ?
- when computer vision lead to SfM-MVS ?

Rationale Bundler & CMVS-PMVS or SfM-MVS

- SIFT (Lowe, 1999) Scale Invariant Feature Transform
- SURF (Bay et al., 2006) Speeded Up Robust Feature
- SBA (Lourakis et al., 2009) Sparse Bundle Adjustment
- Bundler (Snavely et al., 2006)
- CMVS & PMVS (Furukawa et al., 2009)
 - [Clustered & Patched] Multi View Stereo

Rationale Bundler - CMVS & PMVS work flow

- Full automation up to scale
 - Ability to manage 1000's of photos
 - Use of uncalibrated cameras
 - Easy & fast acquisition simple rules & convergent geometry
- <u>Very</u> dense, <u>colour</u> point cloud generation
 - Fully automated capture of 1000000's of points
 - Minimization of blunders (noise) in point clouds
 - Density & accuracy vary to distance common to all IBM
- ... BUT unknown accuracy (& precision)

D. Skarlatos

2012 ISPRS Melbourne – WGIII/4

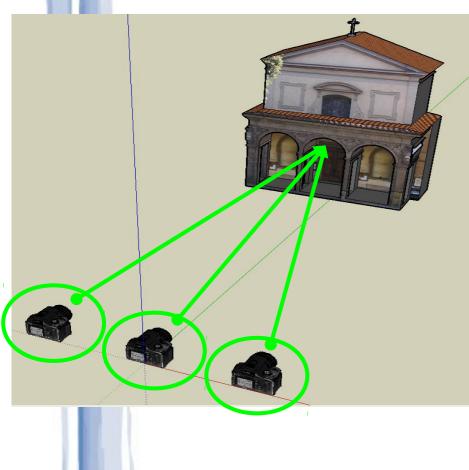
Rationale Laser Scanning vs SfM-MVS

- Both are fast in acquisition & processing time
- Provide huge datasets of colour point clouds
- Advantages & disadvantages are apparent on both

... so why don't we perform a direct comparison,
... while adding the traditional photogrammetry in between
... from the engineer's point of view

Methods & hardware Terrestrial Laser Scanning

Leica ScanStation C10

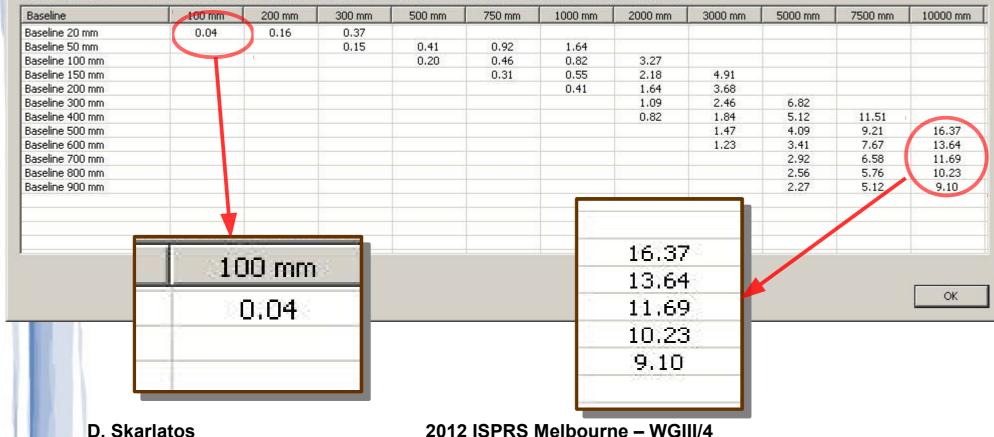

System Performance	
Accuracy of single measurer	nent
Position*	6 mm
Distance*	4 mm
Angle (horizontal/vertical)	60 µrad / 60 µrad (12" / 12")
Modeled surface	2 mm
precision**/noise	
Target acquisition***	2 mm std. deviation
Dual-axis compensator	Selectable on/off, resolution 1", dynamic range +/- 5', accuracy 1.5"

- * At 1 m 50 m range, one sigma
- ** Subject to modeling methodology for modeled surface
- *** Algorithmic fit to planar HDS targets

2012 ISPRS Melbourne – WGIII/4

NIVERSI

Methods & hardware Photogrammetry



- Zscan from MENCI
- Using triplets taken with parallel axis at known distances in between using a pre-calibrated bar (Triple stereo)
- Calibrated Nikon D90 with 24mm fixed focal
- May use control points and solve many triplets in a bundle (independent model) adjustment OR use bar distance to scale object

Methods & hardware **Photogrammetry CAMERA-TO-OBJECT DISTANCE**

Tabulated values of DEPTH ACCURACY are expressed in mm and are PURE THEORETICAL. Real values depend strongly on job conditions.

UNIVERSITY OF

2004

9 / 28

PRU

×

Ô

Ċ \subseteq

Ш S 4 0 2 m

Methods & hardware SfM-MVS

- Multiple un-calibrated hand held photos thought Bundler-CMVS & PMVS work flow
- Measure control points in point cloud
- Perform a scaled similarity transformation for global registration
 - If global registration not necessary, just scale model
- Black box Difficult to amend or check process accuracy & precision

Test models / scenarios

- Artificial mathematical surface
- Simple facade
- Complex scene with a large 3D object

UNIVERSIT

Sphere Artificial surface as reference

- 300mm diameter styrofoam ball
- Texture applied

Phototogrammetry & SfM-MVS tested only

- ZSCAN
 - Distance <u>1.5</u> & 2.5m
 - Base <u>10</u>, 15, 20 & 25 cm
- SfM-MVS

- Five hand held photos autofocus

- ZSCAN triplet with parallel axis @ 1.5m with 10cm base [ZS]
- Same triplet with SfM-MVS [PMVS3]
- Five hand held photos, convergent geometry, autofocus ON, @1.5m [PMVS5]

ZSCAN models @ 1.5m with 0.20, 0.30, 0.40, 0.50 m bases, respectively

D. Skarlatos

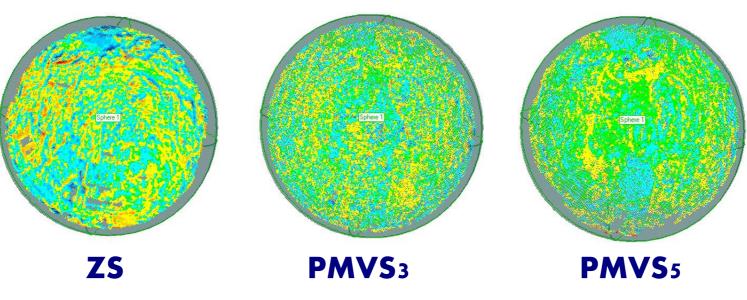
2012 ISPRS Melbourne – WGIII/4

Sphere Precision assessment

Comparison against the best-fit sphere, diameter being calculated from point cloud

- Scale from ZScan bar and manual measurements (7)

- Noise assessment


	ZS	PMVS3	PMVS5
Diameter (mm)	301.599	301.789	302.544
# of points	35232	28747	28493
Max Distance (mm)	6.548	2.574	5.325
Mean Absolute Distance (mm)	0.456	0.275	0.175
STD Distance (mm)	0.600	0.375	0.262

Sphere Precision assessment

Comparison against the best-fit sphere, diameter being calculated from point cloud

- Scale from ZScan bar and manual measurements (7)
- Noise assessment

D. Skarlatos

2012 ISPRS Melbourne – WGIII/4

NERSI

3.0

2.5

2.1

1.6

1.1 0.7

0.2 -0.2

-0.7

-1.1 -1.6

-2.1 -2.5

-3.0

Comparison against the 300mm diameter sphere

- Scale from ZScan bar and manual measurements (7)

200

- Overall assessment of accuracy

	ZS	PMVS3	PMVS5
Max distance (mm)	4.478	2.685	6.011
Mean Absolute Difference (mm)	0.477	0.323	0.284
Mean distance (mm)	0.026	0.058	0.053
RMS (mm)	0.645	0.610	0.384
Standard deviation (mm)	0.620	0.422	0.382
Accuracy (%) (<2σ or <1.6mm)	99.61	99.83	99.95
Completeness (%) on half sphere	58	68	67
D. Skarlatos	2012 ISPRS Melbourne – WGIII/4		16 / 28

Comparison against the 300mm diameter sphere

- Scale from ZScan bar and manual measurements (7)

NIVERSI

2004

3.0

2.5

2.1

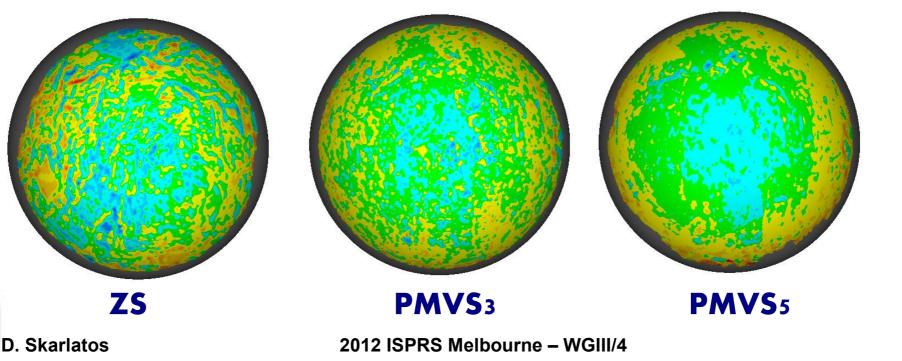
1.6 1.1

0.7

0.2 -0.2

-0.7 -1.1

-1.6


-2.1

-2.5

-3.0

17 / 28

- Overall assessment of accuracy

Facade Object description

13.0 x 5.5 m Narrow road: <5.0m object to photo distance

- Large homogeneous areas unfavourable to IBM
- Flat object difficult to recover focal length with self calibration
- TLS data from a single station, used as reference (~10.3 Mpoints), reduced to 4.3 Mpoints

D. Skarlatos

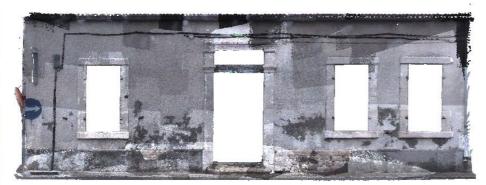
Facade Photography

Typical photo (4288x2848 pix) At ~5m distance Ground pixel size 1.1 mm

ZSCAN

- 13 triplets for ZSCAN
 <u>Hand held</u>
- 39 vertical photos
- 36 oblique photos

... out of which 4 point clouds were created


D. Skarlatos

2012 ISPRS Melbourne – WGIII/4

NIVERSI

Facade Point clouds

- 13 triplets (39 photos) solved with ZSCAN using bundle adjustment [ZS]
- The aforementioned photos solved with SfM-MVS [PMVStr]
- 39 hand held photos solved with SfM-MVS [PMVSvr]
- The afore mentioned 39 photos with additional 36 oblique photos (75 in total) [PMVSall]

2012 ISPRS Melbourne – WGIII/4

Facade Comparison method

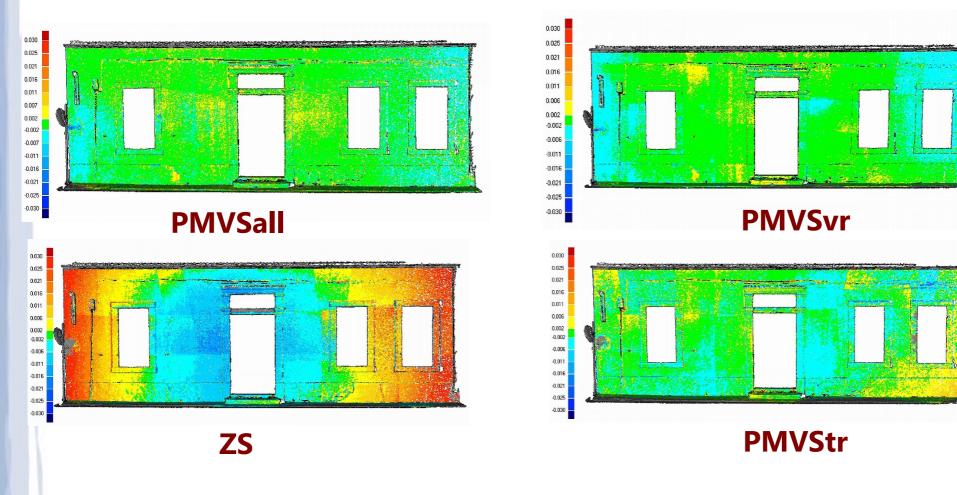
- PMVStr, PMVSvr & PMVSall models were scaled using 7 measured distances on the object
- All models were aligned with the TLS model using ICP
- Final analysis was done using commercial (point-tosurface) and in-house (point-to-point) software with similar results

Facade

Analytic Comparison

AIN	ERSITY	OFTECH	
CYPRUS CU	ICO	CIC	>
CYPH			
	4 14		

	PMVSall	PMVSvr	PMVStr	ZS
# of points	3842824	2481292	3133604	1585216
Mean reprojection error [pix]	0.70	0.49	0.40	-
STD focal length [pix]	2.95	3.21	2.55	-
MAD (m)	0.0016	0.0015	0.0020	0.0078
Mean (m)	0.0001	0.0003	0.0001	0.0005
STD (m)	0.0026	0.0023	0.0031	0.0100


- ZSCAN {accuracy} @6.0m with 0.6m base is <u>3.41mm</u>
- STDs of SfM-MVS is comparable to TLS data, if not better

System Performance	
Accuracy of single measure	ement
Position*	6 mm
Distance*	4 mm
Angle (horizontal/vertical)	60 µrad / 60 µ
Modeled surface precision**/noise	2 mm
Target acquisition***	2 mm std. dev
Dual-axis compensator	Selectable on/ accuracy 1.5" / 28

D. Skarlatos

2012 ISPRS Melbourne –

D. Skarlatos

2012 ISPRS Melbourne – WGIII/4

23 / 28

SUNIVERSITY OF

2004

 \succ

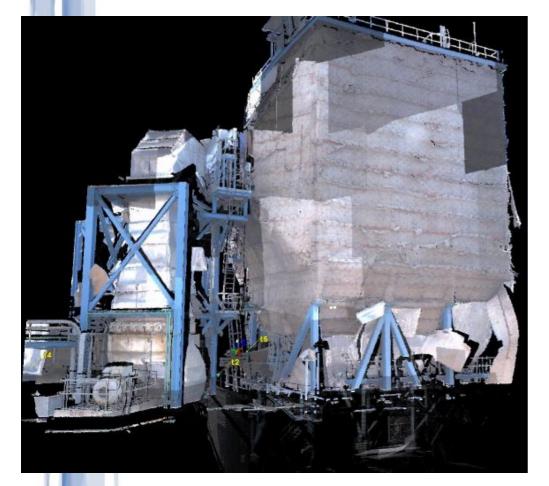
HNO

LUG

Complex Scene EAC's facilities after explosion

- Metal constructions, of high²⁰⁰⁴ complexity
- Distance ~ 17-35m
- Height 26m
- TLS vs SfM-MVS, due to fast acquisition
- Variable illumination conditions at each side of the object - camera set to auto

Complex Scene Photography


Selected positions & 3 sec auto acquisition while moving

2004

• Auto focus ON, Sony a320 20-80mm zoom lens

Complex Scene Qualitative assessment only

2012 ISPRS Melbourne – WGIII/4

UNIVERSITY OF

FNO

C G

Conclusions & Discussion

- TLS & SfM-MVS accuracy comparable in facade
- TLS is better in complex scenes (simplicity, noise)
- Versatility of IBM allows accommodation of smaller objects with higher accuracy
- IBMs are still slower to final result, but cheaper
- IBMs have better colour/texture quality

... so it depends on the application, people & hardware available

... while the combination is always an option

Thank you for your attention

www.photogrammetric-vision.weebly.com

D. Skarlatos

2012 ISPRS Melbourne – WGIII/4