

APPLICATIONS OF OPEN AND FREE SOFTWARE: FROM UNDERWATER TO THE SKY

D. Skarlatos, S. Kiparissi

ISPRS Working Group V/2 Conference, "Cultural heritage data acquisition and processing"

17th -19th August 2011 - University of York, UK

Why don't we use commercial s/w

- Expensive respectively
 - Sometimes they are over-complicated to justify their price tag
- Cannot be customized
 - like GIS packages, so they are black boxes...
- Portability issues
 - Common heritage recording workflow
 - Inexperienced personnel trained once
 - Direct exploitation of data by final user
- Its "strange" to use 25K € s/w for simple tasks

Free Web Services Available

- ARC 3D Webservice
 - A Family of Web Tools for Remote 3D Reconstruction (http://www.arc3d.be/)
 - EPOCH European Network of Excellence in Open Cultural Heritage (http://www.epoch-net.org)

- Microsoft Photosynth
 - http://photosynth.net/
- Autodesk Photofly
 - http://labs.autodesk.com/technologies/photofly/

So, why don't we use them?

- Image copyright issues
 - Archaeologists do not like to share their precious photos
- Completely black box
 - No customization
 - No parameterization

End users (ie archaeologists) want a

-CHEAP

-VERSATILE

-EASY TO USE,

-UNIVERSAL solution

...with data they can access by themselves without elaborate s/w

Standard Photogrammetric Workflow

- Image pre-processing
- Camera calibration
- Bundle adjustment
- Image matching
- Surface reconstruction
- Orthophoto production
- Mosaicking
- 35 or 2D plotting
- Structured light scanners

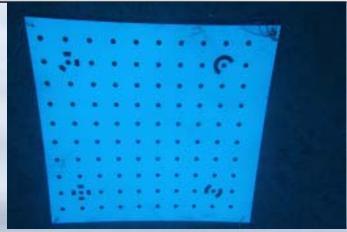
- Imagemagick, GIMP, IrfanView
- OpenCV, GML, Matlab Toolboxes
- SIFT, SBA, Bundler
- CMVS & PMVS
- Meshlab, Scanalyze
- ZPR, and our own extension
- Smartblend, Enblend, Hugin
- VeCAD
- David Laser scanner

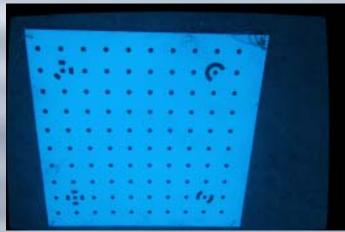
Image Pre-processing

- Common a decade ago
 - when scanned photos were still in use...
- SLR and digital aerial cameras overcome the necessity for that, as quality boosted
- Still necessary if photographic conditions are not optimal
- Irfanview (http://www.irfanview.com/)
- ➤ GIMP (http://www.gimp.org/)
- > ImageMagick (http://www.imagemagick.org/script/index.php)

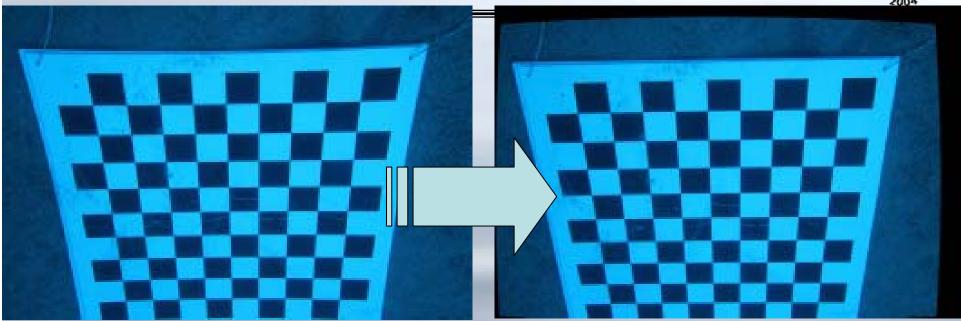
Camera Calibration 1/3

FAUUCAL (MatLab)


(http://portal.survey.ntua.gr/main/labs/photo/staff/gkarras/fauccal.html)


- V. Douskos, G. Karras et al
- Bouguet calibration toolbox (MatLab) (http://www.vision.caltech.edu/bouguetj/calib_doc/)
 - GML extension (http://graphics.cs.msu.ru/en/science/research/calibration/matlab)
- OpenCV (http://opencv.willowgarage.com/wiki/)
 - Calibration & Undistort functions
- Octave (<u>www.gnu.org/software/octave</u>)
- Open source IDE like Code Blocks (http://www.codeblocks.org/),

Camera Calibration 2/3


- Cheap replacement for full 3D calibration fields
- Planar check boards or similar patterns
- Carefully apply estimated values as corrections on images
 - Different parameters as output
 - Large differences among different solution, even with similar parameters

Camera Calibration 3/3

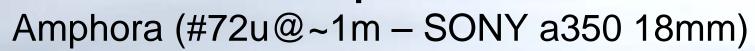
- Bouguet calibration + OpenCV undistort
 - www.cut.ac.cy/en/staff/dimitrios.skarlatos/
- Pre-processing might be necessary for the s/w to accurately & robustly locate corners
- Post-processing to crop image

Bundle Adjustment

- SIFT Scale Invariant Feature Transform
 - D. Lowe, 1999. (http://www.cs.ubc.ca/~lowe/keypoints/)
- SURF Speeded Up Robust Feature
 - Herbert Bay et al., 2006 (http://en.wikipedia.org/wiki/SURF)
- SBA Sparse Bundle Adjustment
 - Lourakis Argyros 2009 (http://www.ics.forth.gr/-lourakis/sba/)
 - C/C++ package, GNU-GPL license
- Bundler
 - Bundle adjustment with self calibration of multiple images
 - N. Snavely et al, 2006 (http://phototour.cs.washington.edu/bundler/)
 - C/C++ package, GNU-GPL license

Comments on bundler

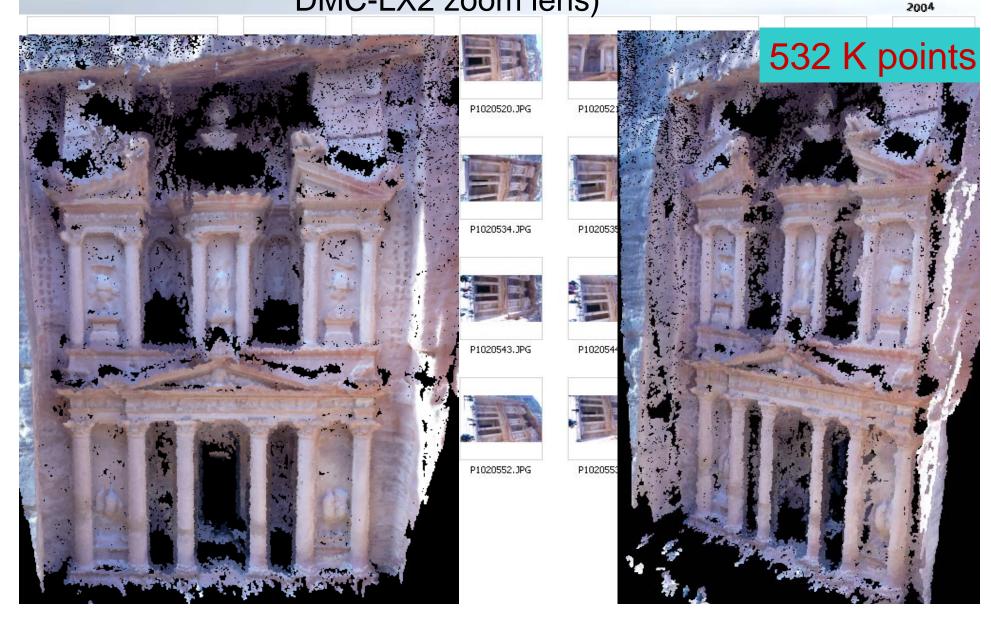
- Not all images can be adjusted experience in coverage & layout issues necessary
- Even worst, images may be adjusted erroneously
 - Therefore, some measures on bundle quality adjustment are necessary
- Very good camera self-calibration
- Simple, fast, with some parameters
- CAN BE CUSTOMIZED !!!


CMVS & PMVS

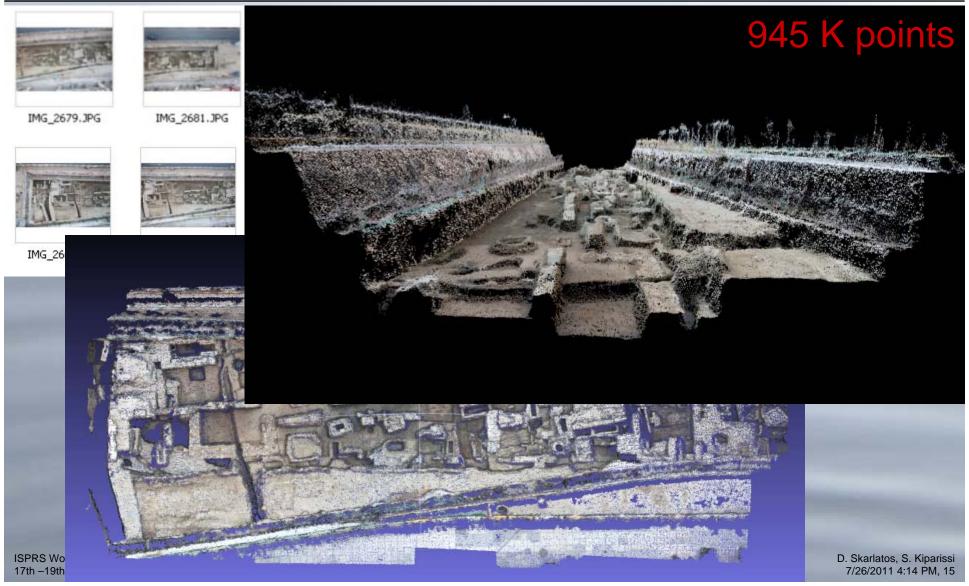
http://grail.cs.washington.edu/software/cmvs/

- Multi image matching for dense full 3D color point cloud generation
 - Y. Furukawa and J. Ponce (2009)
 - C/C++ package, GNU-GPL license
- Accepts Bundler solution as input
- Aimed to optimize computer speed & memory, but these factors need to be taken into consideration
- NO moving objects
- NO SCALE on the point cloud
- NO measures of accuracy on 3D points

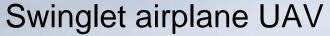
Examples 1/5



Examples 2/5


Touristic handheld photos (#32/40u@20-60m – Panasonic DMC-LX2 zoom lens)

Examples 3/5

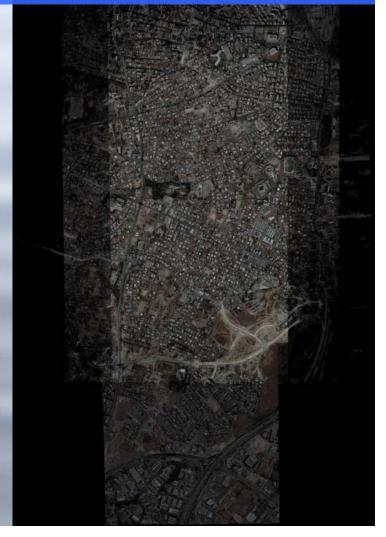

Archaeological site recording from RF helicopter (#8u@20m Canon EOS 5D 24mm)

Examples 4/5

UAV Aerial photography (#9u@60m – Canon IXUS 120IS

1.13 M points

Examples 5/5



3x2 block - 14430x9420 pixels - 80/60% along/across overlap

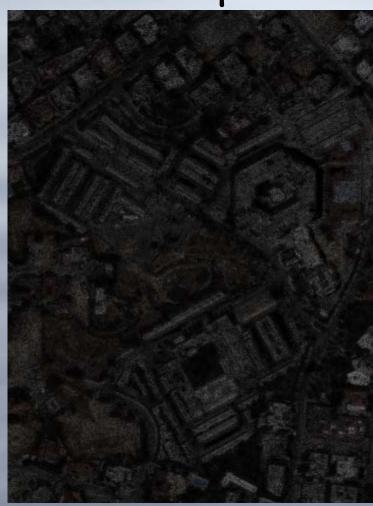
3.5 M points (best case)

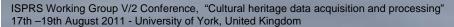
31 M in total

Surface reconstruction

- Meshlab (http://meshlab.sourceforge.net/)
 - a tool developed with the support of the 3D-CoForm project
 - GNU-GPL license
 - Excellent import-export features & exceptionally fast viewing facilities
 - In some aspects better that commercial s/w
- Scanalyze (http://graphics.stanford.edu/software/scanalyze)
 - a system for aligning and merging range data
 - GSL-BSD license

Orthophoto production




- ZPR (http://zpr.sourceforge.net/)
 - by S. Natsis, 2007, diploma thesis at NTUA
 - Assigns colors to laser scanner point clouds and orthographicaly projects the point cloud to the requested plane.
 - Does not depend on surface reconstruction, hence avoids undercuts easily
 - Simple concept, easy implementation
 - Quality not like orthophotos or wrapped images on meshes
 - Final results, heavily depends on density, many holes
- Our own implementation (www.cut.ac.cy/en/staff/dimitrios.skarlatos/)
 - Based on the previous concept
 - Improved gap filling
 - Using directly multiple color ply files and projects them in the XY plane

Examples of orthophoto from dense color point clouds 1/5

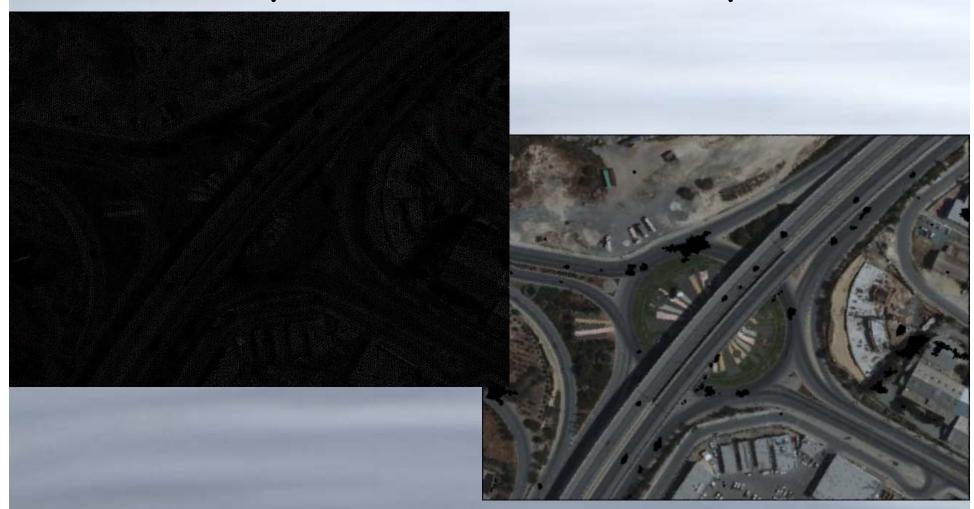
On dense part of the test area (0.2 m pixel size)

D. Skarlatos, S. Kiparissi 7/26/2011 4:14 PM, 20

Examples of orthophoto from dense color point clouds 2/5

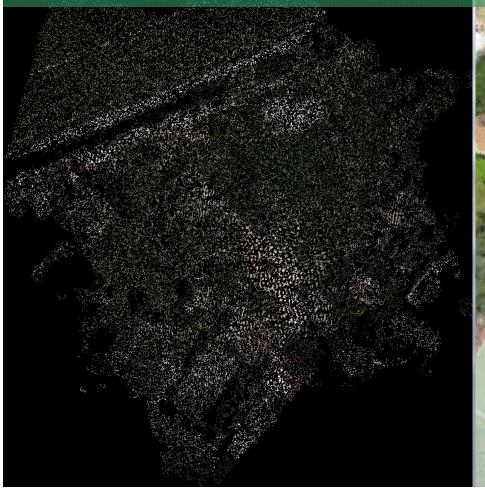
On dense part of the test area (0.2 m pixel size)

Examples of orthophoto from dense color point clouds 3/5


On dense & coarse part of the test area (0.2 m pixel size)

Examples of orthophoto from dense color point clouds 4/5

On coarse part of the test area (0.2 m pixel size)



Examples of orthophoto from dense color point clouds 5/5

Swinglet test data (0.05m ortho pixel size - 0.07m

original pixel size)

Mosaicking

- Smartblend
 - M. Norel (http://wiki.panotools.org/SmartBlend)
- Enblend/Enfuse
 - http://enblend.sourceforge.net/
- Hugin
 - http://hugin.sourceforge.net/
 - Parameters that are similar to photogrammetry for internal geometry (1+2+3) and "positioning" of images (6)

Direct mosaicking

Orthophoto mosaicking

Scanning of small objects

David Laserscanner

- http://www.davidlaserscanner.com/
- Line laser, a web cam and a calibration box
- Free s/w for scanning
- Registration at extra cost, but alternative s/w might be used
- All together ~350€

New troubles or new opportunities ??

Think LINUX
Think Android
Think Google Earth
Think OPEN

Evolve or disappear?

Thank you