Coastal Survey of archaeological sites using drones

In Poseidon's Realm XXI

Underwater archaeology - interdisciplinary approaches and technical innovations

Dimitrios Skarlatos, Savvidou Eleni
Photogrammetric vision Lab
Department of Civil Engineering and Geomatics
Cyprus University of Technology

- Introduction in mapping with drones
- Water refraction and limitations in coastal areas
- Proposed algorithm
- Testing against bathymetric Lidar data in ancient Amathounta site
- Implementation in Ag. Napa coast

Mapping with drones: Photogrammetric Products

Three main products:

- Stereoplotting and vector plots
- Digital Surface Models
 - Or Image Based 3D Modelling (IBM)
- Ortho Photo Mosaics
 - Corrected from central projection
 - Corrected from elevation distortion
 - Color corrected mosaic
 - Uniform scale and high detail

Orthophoto vs sketch and vector plot

Photo platforms 1/2

Mapping with drones: Wide adoption

Two major advancements:

- Navigation automation with GPS, on multi-copters and fixed wing AUAV
 - Strong cost reduction after wide adoption
- Software automation
 - Simple
 - Easy
 - Fully automated 3D modelling
 - hence more users, wider adoption of technique

... make one revolution!

AUAVs: Current photo platform

- Several names
 - ► UAV, AUVs
 - UAS
 - Drones

- Specs
 - Range and flying time
 - Load capacity
 - Automations

Mapping with drones Perfect tool?

Seems so, ..., so far:

- Cost effective (automation)
- Fast acquisition and processing (auto)
- Accurate 3D model
- Versatile level of detail
- Adopted by non experts
- Provide much more visual information (orthophotomaps and textured 3D models)
- Support interpretation and understanding of the relationship among neighboring sites, finds, areas, in a context rich map

Major problem: water refraction

Major problem: water refraction

Anything below sea surface is wrong!

- Each image area covered with water, should be treated for refraction
 - Either analytically or image based correction
- Since depth is needed for refraction correction, and we do not know it, we have to adopt an iterative process
- The final process should be <u>a slight modification</u> of standard practice (and software)

Standard algorithm

Proposed algorithm

- Large archaeological area, with different sites
 - Useful to Dept. Antiquities
- Lidar depth data
 - ▶ 5m grid
 - ~0.10m depth accuracy

Underwater harbour

Initial and final contours vs

Checking against ~5500 Lidar points

Iteration	Mean [m]	Standard deviation [m]	Percentage %	RMS [m]
0	1.07	0.92	39.5	1.41
1	0.60	0.93	15.6	1.10
2	0.46	0.74	9.1	0.87
3	0.08	0.53	-1.4	0.53

Depth improvement vs depth

Ag. Napa, application site Archaeological survey

New marina development area

Ag. Napa, implementation site

Flights

- 159 photos collected over 2 flights
- Average flying altitude ~ 207m
- Aerial imagery resolution ~ 7cm
- Area covered ~
 1.34km²

Ground Control Points

- 24 GCPs collected with GPS RTK
- XYZ error 3.7cm,
 3.7cm, 5.9cm
- Total error –
 7.9cm/1.05 pix

Bathymetric correction

Details

Final map to Dept. of Antiquities

- The proposed method and algorithm, performs depth correction and extraction for bathymetric contours, using aerial photos from drones
- Correct bathymetry improves accuracy of final orthophotomaps is shallow waters
- Hence, allowing seamless coastal orthophotomaps land and sea of up to 13m depth
- Therefore provide a unique mapping tool for surveying coastal archaeological sites
- BUT, still depended on sea waves and weather conditions during data capture

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGMENTS

Honor Frost Foundation 2015 Grant

MareLab, University of Cyprus

Dept. of Antiquities, Cyprus